
Discussing on the vital aspects of

'C', the expert stressed on the need

o f s t r o n g f o u n d a t i o n i n

programming and outlined the

best preparation for project

development.

Technical talk on Professional

p r o b l e m s o l v i n g w i t h

programming languages with

special reference to "C" was

organized for MCA students. The

expert speaker Mr. Gaurav

Vishwakarma (Director, Xavoc

International, Udaipur), an IT

Professional working, in the

A newsletter of

CSI Student Branch

Aishwarya Institute of Management & IT

Udaipur

tri annual

 CSI ConnectConnect May 2012 - August 2012

Is
su

e
 :

 2

Aamir Sanwari
(MCA)

Meenakshi Rao
(MCA)

Student Members

Ritesh Chouhan
(MCA)

www.aishwaryacollege.org

www.rtu.ac.in

www.csi-india.org

www.ekalavya.it.iitb.ac.in

www.nbrc.ac.in/library/free_ebooks.htm

www.delnet.nic.in

Dr. Archana Golwalkar
(Director, AIM & IT)

Editor

Dr. Seema Singh
Chairperson & Managing Director
Aishwarya Education Society

Patron

IMPORTANT LINKS

Suman
(MCA)

th
n 18 July 2012, a Workshop Oon "How to write effective

research paper" was organized by
CSI Student Branch for the MCA
Students of Aishwarya Institute of
Management and IT. The expert
was Mr. Kapil Shrimal (Asst.
Professor, AIM & IT) to lay a
f o u n d a t i o n t o w a r d s b a s i c
understanding in students. The
workshop started with the
discussion on the concept of
research papers. The expert
emphasized on the relevance and
need of writing research papers
among students. The session
covered: meaning of research
paper, types of research paper, data
collection, research methodology,
layout of research paper, with
examples. Mr. Kapil Shrimal
discussed the techniques of writing
a research paper, with different
sources focusing on primary and
s e c o n d a r y d a t a c o l l e c t i o n .
Importance of literature review
was also included.

How to Write
EFFECTIVE RESEARCH

PAPER

Students were inspired and

encouraged to participate in the

area of Research, in their field of

interest, by Dr. Archana Golwalkar

(Director AIM & IT).

Professional problem

solving with

programming

languages with special

reference to 'C'

Industry, since last 14 Years in IT,

Media and Branding Fields. He is

considered as one of best logical

analyst. Mr Vishwakarma made the

students aware of the skills

r e q u i r e d i n t h e i n d u s t r y.

 C
S

I C
on

ne
ct

C
on

ne
ct

instance, the Java Virtual Machine).

But this isn't always the best option

-- if you need top performance, for

example, or if you're working on

legacy code written in C or C++.

And you need to be aware of the

i s s u e s i nvo lve d i n w r i t i n g

unexploitable code. Two common

attacks are buffer overflows and

the double free attack. Since I'm not

out to write a how-to on cracking

security, I won't cover the details of

exploiting these attacks any more

than you need to know to avoid

them. Instead, I'll talk about

practices you can use to prevent

them.

Writing secure code is a big deal.

There are a lot of viruses in the

world, and a lot of them rely on

exploits in poorly coded programs.

Sometimes the solution is just to

use a safer language-Java, for

instance - that typically runs code

in a protected environment (for

Writing
Secure

Code

Buffer Overflows
Smashing the Stack

"stack frame". Here is a rough

picture of what the stack frame

would look like for a function call:

[memory for variables in the

f u n c t i o n] [F P] [r e t] [f u n c t i o n

arguments]

First, memory is allocated for

variables declared in the function.

Then the frame pointer, FP, which is

used to address variables within

the stack frame, then the address to

return to after the function call, ret,

followed by the arguments to the

function. The gist of this attack is

that on the stack, for every function

call, the ret pointer indicates where

in memory to jump once the

function has finished executing. In

normal execution, this should be

back to the calling function.

However, in some cases, if the

program allows overflowing the

buffer stored in the memory

allocated for the function, it's

possible for an attacker to set this

value to point to an arbitrary region

of memory into which the attacker

has written executable code.

(Often, this will actually be the

buffer itself.)

A buffer overflow occurs when you

allow the user to enter more data

than your program was expecting,

t h e re by a l l ow i n g a rb i t ra r y

modifications to memory. Due to

the way the stack is set up, an

attacker can write arbitrary code

into memory. This is how the

Morris Worm worked, and it's how

thousands of exploits since have

worked. When functions are called,

both the memory to store the

variables declared in the function

and the memory to store the

arguments to the function are

pushed onto the stack as part of a

How can a
buffer overflow

attack happen?
When you declare arrays in C or
C++, you get a specified amount of
memory to work with. This
memory, on many systems, is
placed before the pointer to the
return site (where the function
should return to after executing).

For instance, you might declare an
array of 100 bytes:

char memory[100];

This is all well and good. But what if
you really wanted to use 200 bytes?

C will let you:

memory[150] = 'a';

There aren't bounds checks on the
array, and the code might even
work. (At least in some cases, you'll
get a segmentation fault, but this
will depend on whether or not the
memory you're accessing belongs
to your program or not. You might
just overwrite other data in your
portion of the stack.)

But you know not to just play with
memory you haven't asked for, so
you probably won't do things quite

means that you have to add the
NULL terminator manually if you
want to use functions such as printf
that rely on it.

Note that sizeof(buffer) works
because buffer is an array; you
cannot do the same thing using a
char* that you dynamically allocate
using malloc or new.

In place of strcpy or strcat, use the
corresponding strncpy or strncat
functions that take the length of
data to be copied.

char *strncpy(char *destination,

const char *source, size_t n);

Using strncpy will result in at most
n bytes being copied from source to
destination, and strncpy will
return a pointer to destination. For
instance, i f you know that
destination can hold only 20
characters:

char destination[20];

char *source = "This is a particularly

long string";

st r n c py (d e st i n at i o n , s o u rc e ,

sizeof(destination));

This will copy only as much of
source as can fit in destination and
return a pointer to destination. You
should be aware that strncpy will
not automatically append a null
terminator, which means that you
can go from a regular, null-
terminated string to a non-null-
terminated string if you try to copy
a string that won't fit into the
destination.

char *strncat(char *destination,

const char *source, size_t n);

null-terminated string back. And,
to replace sprintf, you can use
snprintf

int snprintf(char *destination, size_t

n, const char *format, ...);

which will only write a string of n
bytes into the memory pointed to
by destination, protecting you from
an attacker's writing arbitrary data
into your string when you do
something like

sprintf(dest, "The user entered: %s",

user_input_string);

which allows the result stored in
dest to be as long as is necessary to
store the user_input_string.

Although we've only looked at
examples where the size of
memory was allocated at compile
time, and consequently ended up
on the stack, similar problems
apply to memory allocated during
program execution. Although I
don't know of a way an attacker
would be able to change the flow of
control by modifying memory
allocated on the heap, simply by
changing variables an attacker
could cause problems (imagine
having a username field that your
program uses for access control,
and that an attacker can find a way
to change that memory).

The strncat function copies up to
n characters from source onto
the end of destination, starting
from the nul l - terminator
character of destination. Again,
if you run out of space in
destination before reaching the
end of source, you won't get a

like that. Generally, what happens
is that a function you call will
overwrite the memory instead.

You might use a function such as
gets() or strcpy that isn't aware of
how much memory you asked for,
and consequently, how large an
array you have space for. This is
particularly a problem for standard
library functions that work on
NULL-terminated strings such as
strcpy, strcat, etc. Since they rely on
finding a terminating character, if
the string being worked with is too
long, they'll happily overwrite the
end of the buffer, and if you had
declared the memory as an array,
you might end up overwriting data
on the stack. This is what is
referred to as "smashing the stack".

Other dangerous functions include
scanf and sprintf for similar
reasons as gets.

What should you use instead? In
place of gets() or using scanf to
read in a string, use fgets()

char *fgets(char *buffer, int size, FILE

*stream);

fgets takes a size -- make this the
size of your buffer and it will read in
up to size bytes into buffer from the
file pointed to by stream. So, if you
want to read from standard input
(stdin) in order to replace gets:

char buffer[10];

fgets(buffer, sizeof(buffer), stdin);

This will allow the user to input up
to 10 bytes for use in buffer. It will,
however, add a '\0' terminator to
buffer. Doing so would, of course,
write off the end of the array. This

 C
S

I C
on

ne
ct

C
on

ne
ct

Double
Free Attack

This shouldn't ever need to happen
in your code. The easiest way to
avoid it is simply to set your pointer
to point to NULL once you've freed
it:

free(x); x = NULL;

been freed before you have re-
initialized the pointer with a new
memory address:

free(x);

/* code */

free(x);

Another, more
sophisticated
attack is the

double free attack that affects some
implementations of malloc. The
attack can happen when you call
free on a pointer that has already

 C
S

I C
on

ne
ct

C
on

ne
ct

/* code */

free(x);

Since free(NULL) is a valid
operation that doesn't do
anything, you're safe. Of course,
this doesn't protect you from
code that frees memory without
telling you (or without making it

obvious that memory is getting
freed). One way of detecting these
types of problems is to use a
memory error detector such
Valgrind to ensure that you only

execute valid operations. (Valgrind
will also detect use of initialized
memory, use of invalid memory
such as is the case with buffer
overflows, and memory leaks.)
Since the double free problem is
one that should show up more or
less regardless of user input -- you
don't need a malicious attempt to
overflow the buffer to test for
double frees -- Valgrind is a good
tool for finding these bugs. Of
course, this isn't always the case.
For instance, a double free

vulnerability in the zlib library
(CERT Advisory) required a certain
type of user input to even cause
free to be called twice on the same
memory.

This bug is harder to exploit than
potential buffer overflows, and it
a lso rel ies on a particular
implementation of the memory
allocation system. Nevertheless,
it's important to ensure that your
code correctly frees only valid
blocks of memory.

WE LOOK FORWARD FOR YOUR FEEDBACK

Address : Adarsh Nagar, University Road, Udaipur (Raj.) 313 001, Tel.: 0294-2471965, 2471966,
Fax : 0294-2471930, E-mail : info@aishwaryacollege.org, Website : www.aishwaryacollege.org

1. Tom's mom had three children.
The first was named May, the
second was June. What was the
third childs name?

2. The manufacturer doesn't
want to use it, the buyer
doesn't need to use it and the
user doesn't know he's using
it. What is it?

3. The word CANDY can be
spelled using just 2 letters. Can
you figure out how?

4. Bill bets Craig $100 that he can
predict the score of the hockey
game before it starts. Craig
agrees, but loses the bet. Why
did Craig lose the bet?

5. What is the next 3 letters in
this sequence?

o t t f f s s _ _ _

6. FOUR is HALF of FIVE.

Is this statement True or
False?

7. A woman shoots her husband.

Then she holds him under
water for over 5 minutes.

Finally, she hangs him.

But 5 minutes later they both

Brain teasers

Q) Imagine that you are in a boat, in the
middle of the sea. Suddenly you are
surrounded by hungry sharks, just
waiting to feed on you. How can you
put an end to this?

A) Stop Imagining!

go out together and enjoy a
wonderful dinner together.

How can this be?

8. What do these 3 have in
common?

Superman

Moses

The Cabbage Patch Kids

9. What is black when you buy it,
red when you use it, and gray
when you throw it away?

10. C a n y o u n a m e t h r e e
consecutive days without
using the words Monday,
T u e s d a y , W e d n e s d a y ,
Thursday, Friday, Saturday, or
Sunday?

Answers
1. Tom.....Tom's mom had three

children, June, May, and Tom.

2. A Coffin

3. The answer: C and Y

4. Bill said the score would be 0-0
and he was right. Before any
hockey game starts, the score
is always 0-0.

5. "e n t " They represent the first
letter when writing the
numbers one thru ten.

6. It's True. The Roman Numeral
FOUR (IV) is in the middle of
the word Five: F(IV)E

7. T h e w o m a n w a s a
photographer. She shot a
picture of her husband,
developed it, and hung it up to
dry.

8. They were all adopted!

9. The answer is Charcoal. In
Homer Simpson's words:
Hmmmm... Barbecue.

10. Sure you can: Yesterday, Today,
and Tomorrow!

	Page 1
	Page 2
	Page 3
	Page 4

